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THE MOTION OF A PARTICLE IN THE NON-STATIONARY 
FIELD OF A LOGARITHMIC POTENTIAL? 

S. G. ARTYSHEV 

Moscow 

(Received 13 March 1990) 

The plane motion of a material point, driven by a force inversely proportional to the distance from a fixed 

centre of variable mass, is studied. Consideration is given to the case in which the motion may be integrated 

by using a specially obtained first integral. 

1. THE EQUATION of motion of a particle of unit mass in the field of a logarithmic potential is 

2” + f (t)lE = 0 (1.1) 

where z(t) = x(t) + iy(t) = r(t)e iVp(t) is the complex coordinate of the particle in the plane, t is the time x(t), 
y(t) are the Cartesian coordinates of the particle, r(t), q(t) are its polar coordinates andf(t) is a real function 
of time; the bar denotes complex conjugation. If f(t)>0 the particle is attracted to a centre of force at the 
origin; if f(t) < 0 it is repelled. the total energy 

E (t) = (s’~ + y’9/2 + f (t) In I”- 

is not conserved, but the angular momentum 

M = i (z?’ - Ez’)/2 = r2’p’ (1.2) 

is an integral of the motion. 
We shall study the case in which p(t) = l/f(t) is a quadratic polynomial in time: 

p (t) = at2 + bf + c 

where a, b, c are real constants. Applying the method of [l] to Eq. (1. I), we can determine an integral of 
motion which is functionally independent of (1.2): 

I = pz’f’ - p’ (52’ + zZ’)/2 + p”zf/2 + In (25 / ( p I) 

After changing to polar coordinates this integral becomes 

I = p (r’2 + M2/r2) - p’rr’ + p”r2/2 $- ln (9 / 1 p I) 

If the unknown function r(t) is replaced by u(t) = r’(t)@(t), we obtain the equation 

(1.3) 

pzu.2 = --&I In 1 u I-j- 4Iu + Du2 - 4Ma 

where D = b2 - 4ac is the discriminant of p (1). 
Let us express the constant I as I = lnj, j>O, and set v = ulj, q = j1”p/2, w = Mlj”‘, 6 = jDl4, a = aj’“12, 

p = bjli212, y = CJ “‘*/2 We will introduce a modified time variable . 

TPrikl. Mat. Mekh. Vol. 55, No. 6, pp. 104%1051, 1991. 

936 



Motion of a particle in field of logarithmic potential 937 

FIG. 1. 
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(1.4) 

where to is the starting time. Since dT/dt = 2&d(j)], the integrals of motion (1.2) and (1.3) may be written, 
respectively, as follows: 

dvfdz = ‘i,yiv 

(dv/dz)* = -v In ) v ( + 6~2 - p2 

(1.5) 

(1.6) 

2. The form of the solution of Eq. (1.6) depends on the shape of the graph of the function 
g(v) = -vlnl VI + 6v2- p,2 (Fig. l), the initial value vc = v(0) and the choice of sign for the initial velocity 
dv(O)/dT. We shall only discuss the case in which tat0 for all p(t) >O. In that case we are only interested in 
those points of the domain ,) 0 at which g (v 2 0). If 6 3 l/2, then g(v) has only one root vi (Fig. 1, curve 1). The 
coordinate V(T) of the particle tends to + 00 as r increases. If the initial velocity is negative, then before going to 
+ CO the point stops and turns at v = vi. If 0 < 6 < l/2, then g(v) has a local maximum and a local minimum 
(Fig. 1, curve 2) and, depending on the magnitude of u’, it will vanish once (in which case the motion will be 
similar to that considered previously), twice or three times. If there are two roots, one of them (w) is a double 
root: g(w) = g’(w) = 0, and therefore is a stationary point of the solution of Eq. (1.6) relative to the modified 
time T. The corresponding solution of our original equation (1.1) is a spiral of the form: 

‘r2 (t) = ip (1) w, ‘p (t) = ‘PO + l/plAw ‘c (t), t > to (2.1) 

where cpa is the initial angle. If w = v1 = v2< vs , the solution (2.1) is stable; if v2 = v3 = w> vi, it is unstable, 
and as V(T)+W the particle will execute a critical motion on the modified time scale. If there are three distinct 
roots VI< ~2 < v3 (Fig. 1, curve 2), the particle may execute infinite motion in the domain v 2 v3 and periodic 
motion in the interval between the roots vi and v2. In that case the two spirals defined by (2.1) with w = v1 and 
w = v:! , respectively, may be considered as two boundaries between which the true path of the particle will lie. 

If 660, then g(v), depending on ~~~ will have either no roots, one root or two (Fig. 1, curve 3). In the 
modified time scale, the particle may execute only periodic motion in the interval between the two roots. If the 
two roots vi and v2 coincide, it will travel a stable spiral path. In particular, if 6 = 0, p2 = l/e, we obtain the 
path described by (2.1) with w = l/e, where e is the base of the natural logarithm. 
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As is obvious from (1.4), an infinite interval [to, 00) on the ordinary time axis 1 may define a bounded interval 
[0, 71 ) on the modified time axis T. For example if 6 < 0, a > 0, we get 

tl E --& in- 2arctg -&J (2.2) 

The solution of the equation 

for W, substituted into (2.1), defines a spiral curve, to which the actual path of the particle will tend with time. 
In cases where the time ri is finite, one should find an analytical solution of the non-linear equation as a 
Maclaurin series, using the technique of [2]. For Eq. (1.6) this gives an expansion 

v (7) = u0 + sr + s2 + . 

The expressions for the first seven terms are as follows: 

sr = Ar, A = (--I+ In 1 ug 1 + 6IQ - pp 

s, = h,r*/21, h, = (26~~ - i - In I u. ])/2 

s, = Ah,z*/3!, h, = (26 - i/u,)/2 

s, = (h,h, + A2h,) +/4!, h, = 1/2voa 

So = (Ash, + A (ha + h&J) ts/5!, h, = --l/uo8 

s,, - [A4ha + A2 (6h,h, + 5hlhz) + 3&,“h, + h,hIal VV61, h, = 3/uo4 

s7 = [A%, + A3 @,h, + lfh,h, + WY + A (1% (h&, + W,) + 

+ hleh, + h$‘)] ~‘/71, h, = --12/uo6 

Figure 2 shows the results of solving equation (1.6) with 6 = -11.700; p = 0.064; v0 = 0.018; vi = 0.016; 
v2 = 0.132. Curve 1 was computed using the formula V(T) = vc + sr + s2 + . . . + s, and curve 2 by applying the 
algorithm of (31 with mesh-size H = 0.001. The special feature of this high-accuracy algorithm is that it enables 
one, while computing, to conserve the value of the first integral (1.3) of the equation of motion. In our 
example, the results are practically identical up to a time 7< 0.3. Since 6 = - 11.7 c 0, it follows from (1.4) and 
(2.2) that as real time varies from to = - 01 to +m the modified time varies by an amount 71 = 27~/fl= 1.8. 
Hence our analytical formulas for the approximate solution may turn out to be applicable over a large real time 
interval. 

Note that in the special case when D = b2 - 4ac = 0 we obtain a result established by I. V. Meshcherskii. 
I am indebted to D. V. Krasnov for assistance with the computations. 

FIG. 2. 
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ON THE EXISTENCE OF STATIONARY SOLITARY WAVES 
IN A ROTATING FLUID? 
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Nizhnii Novgorod 

(Received 24 August 1990) 

A mathematical proof that there are no stationary solutions of the soliton type is given for a number of 

equations related to Ostrovskii’s equation which, in particular, describes the surface and internal waves in a 

rotating fluid. A physical interpretation of this fact is presented. It is shown that, in the case of a different 

character of the high frequency dispersion which corresponds, for example, to capillary waves on a shallow 

rotating fluid, the conditions of the theorem are not satisfied as a result of which the prohibition on the 

existence of sohtons is lifted. In this case, both single solitons as well as stationary formations consisting of 

solitons, that is, multisolitons, are constructed using numerical calculations. 

1. FORMULATION OF THE PROBLEM 

CONSIDER the class of non-linear wave equations of the form 

(1.1) 

Here, q(x, t) is an unknown function, c, a, p, y and p are constants and p > 1. Equations belonging to this 
family are generated on the one hand by the generalised Korteweg-de Vries (KdV) equations and pass into 
them when y = 0 and, on the other hand, their structure is close to the structure of the Kadomtsev-Petviashvili 
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